ACM POJ 1458 Common Subsequence (最长公共子序列,动态规划)
Common Subsequence
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 25178 | Accepted: 9726 |
Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
Input
The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
Output
For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input
abcfbc abfcab programming contest abcd mnp
Sample Output
4 2 0
Source
/*
POJ1458Common Subsequence
*/
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
#define MAXN 210
char str1[MAXN];
char str2[MAXN];
int dp[MAXN][MAXN];
int solve()
{
int len1=strlen(str1);
int len2=strlen(str2);
int i,j;
for(i=0;i<=len1;i++) dp[i][0]=0;
for(i=0;i<=len2;i++) dp[0][i]=0;
for(i=0;i<len1;i++)
for(j=0;j<len2;j++)
{
if(str1[i]==str2[j]) dp[i+1][j+1]=dp[i][j]+1;
else
{
dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
}
}
return dp[len1][len2];
}
int main()
{
while(scanf("%s%s",&str1,&str2)!=EOF)
{
printf("%d\n",solve());
}
return 0;
}
人一我百!人十我万!永不放弃~~~怀着自信的心,去追逐梦想